N Queens

N 皇后

题目描述

n皇后问题研究的是如何将n个皇后放置在nxn的棋盘上,并且使皇后彼此之间不能相互攻击。

给定一个整数,返回所有不同的n皇后问题的解决方案。

每一种解法包含一个明确的n皇后问题的棋子放置位置,该方案中Q.分别代表了皇后和空位。

示例:

输入:4
输出:[
 [".Q..",  // 解法 1
  "...Q",
  "Q...",
  "..Q."],

 ["..Q.",  // 解法 2
  "Q...",
  "...Q",
  ".Q.."]
]
# 解释: 4 皇后问题存在两个不同的解法。

解法:

解法一:回溯法(一)

  • 时间复杂度: O(N!)

  • 空间复杂度: O(N)

var solutions [][]string

func solveNQueens(n int) [][]string {
    solutions = [][]string{}
    column := make([]bool, n)
    diagonals1 := map[int]bool{}
    diagonals2 := map[int]bool{}
    rows := []int{}
    queens(n, rows, column, diagonals1, diagonals2)
    return solutions
}

func queens(n int, rows []int, column []bool, diagonals1, diagonals2 map[int]bool) {
    if len(rows) == n {
        tmp := genarateQueen(rows)
        solutions = append(solutions, tmp)
        return
    }
    for i := 0; i < n; i++ {
        if column[i] {
            continue
        }
        if diagonals1[i+len(rows)] || diagonals2[i-len(rows)] {
            continue
        }
        column[i] = true
        diagonals1[i+len(rows)] = true
        diagonals2[i-len(rows)] = true
        rows = append(rows, i)
        queens(n, rows, column, diagonals1, diagonals2)

        rows = rows[:len(rows)-1]
        column[i] = false
        delete(diagonals1, i+len(rows))
        delete(diagonals2, i-len(rows))
    }
    return
}

func genarateQueen(rows []int) []string {
    res := []string{}
    for _, num := range rows {
        str := ""
        for i := 0; i < len(rows); i++ {
            if num == i {
                str += "Q"
            } else {
                str += "."
            }
        }
        res = append(res, str)
    }
    return res
}

解法二:回溯法(二)

  • 时间复杂度: O(N!)

  • 空间复杂度: O(N)

var solutions [][]string

func solveNQueens(n int) [][]string {
    solutions = [][]string{}
    var column, diagonals1, diagonals2 int
    rows := []int{}
    queens(n, rows, column, diagonals1, diagonals2)
    return solutions
}

func queens(n int, rows []int, column, diagonals1, diagonals2 int) {
    if len(rows) == n {
        tmp := genarateQueen(rows)
        solutions = append(solutions, tmp)
        return
    }
    availablePositions := (1<<n - 1) & (^(column | diagonals1 | diagonals2))
    for availablePositions != 0 {
        position := availablePositions & (-availablePositions)
        availablePositions = availablePositions & (availablePositions - 1)
        rows = append(rows, bits.OnesCount(uint(position-1)))
        queens(n, rows, column|position, (diagonals1|position)>>1, (diagonals2|position)<<1)

        rows = rows[:len(rows)-1]
    }
    return
}

func genarateQueen(rows []int) []string {
    res := []string{}
    for _, num := range rows {
        str := ""
        for i := 0; i < len(rows); i++ {
            if num == i {
                str += "Q"
            } else {
                str += "."
            }
        }
        res = append(res, str)
    }
    return res
}

Last updated

Was this helpful?