Unique Paths II
不同路径2
题目描述
一个机器人位于mxn
网格左上角,每次只能向下或者向右移动异步,机器人试图到达网格右下角。
在考虑障碍物的情况下,有多少条不同的路径?
示例:
输入:obstacleGrid = [[0,0,0],[0,1,0],[0,0,0]]
输出:2
解法
解法一:动态规划1
时间复杂度:
O(mn)
空间复杂度:
O(mn)
func uniquePathsWithObstacles(obstacleGrid [][]int) int {
r, c := len(obstacleGrid), len(obstacleGrid[0])
dp := make([][]int, r)
for i := range dp {
dp[i] = make([]int, c)
}
for i := 0; i < r; i++ {
if obstacleGrid[i][0] == 1 {
break
}
dp[i][0] = 1
}
for i := 0; i < c; i++ {
if obstacleGrid[0][i] == 1 {
break
}
dp[0][i] = 1
}
for i := 1; i < r; i++ {
for j := 1; j < c; j++ {
if obstacleGrid[i][j] == 1 {
continue
}
dp[i][j] = dp[i-1][j] + dp[i][j-1]
}
}
return dp[r-1][c-1]
}
解法二:动态规划2
时间复杂度:
O(mn)
空间复杂度:
O(n)
,n
代表网格列的长度
func uniquePathsWithObstacles(obstacleGrid [][]int) int {
r, c := len(obstacleGrid), len(obstacleGrid[0])
dp := make([]int, c)
for i := range dp {
if obstacleGrid[0][i] == 1 {
break
}
dp[i] = 1
}
for i := 1; i < r; i++ {
for j := 0; j < c; j++ {
if obstacleGrid[i][j] == 1 {
dp[j] = 0
} else if j != 0 {
dp[j] = dp[j-1] + dp[j]
}
}
}
return dp[c-1]
}
Last updated
Was this helpful?