Triangle

三角形最小路径和

题目描述

给定一个三角形,自顶向下找出最小路径和。每一步只能移动到下一行中相邻的节点上。

相邻节点是指,本层下标与上一层节点下标相等,或者节点数大1。

示例:

输入:
[
    [2],
    [3,4],
    [6,5,7],
    [4,1,8,3]
]
输出:11

解法

解法一:动态规划1

  • 时间复杂度:O(n^2)

  • 空间复杂度:O(n*n)

func minimumTotal(triangle [][]int) int {
    r := len(triangle)
    c := len(triangle[r-1])
    dp := make([][]int, r)
    for i := range dp {
        dp[i] = make([]int, c)
    }

    for i := 0; i < len(triangle[0]); i++ {
        dp[0][i] = triangle[0][i]
    }
    for i := 1; i < r; i++ {
        for j := 0; j < len(triangle[i]); j++ {
            if j == 0 {
                dp[i][j] = triangle[i][j] + dp[i-1][j]
            } else if j >= len(triangle[i-1]) {
                dp[i][j] = triangle[i][j] + dp[i-1][j-1]
            } else {
                dist1 := triangle[i][j] + dp[i-1][j-1]
                dist2 := triangle[i][j] + dp[i-1][j]
                dp[i][j] = dist1
                if dp[i][j] > dist2 {
                    dp[i][j] = dist2
                }
            }
        }
    }
    min := dp[r-1][0]
    for i := 1; i < c; i++ {
        if min > dp[r-1][i] {
            min = dp[r-1][i]
        }
    }
    return min
}

解法二:动态规划2

  • 时间复杂度:O(n ^ 2)

  • 空间复杂度:O(n)

func minimumTotal(triangle [][]int) int {
    r := len(triangle)
    c := len(triangle[r-1])
    dp := make([]int, c)
    for i := 0; i < len(triangle[0]); i++ {
        dp[i] = triangle[0][i]
    }

    for i := 1; i < r; i++ {
        for j := len(triangle[i]) - 1; j >= 0; j-- {
            if j == 0 {
                dp[j] += triangle[i][j]
            } else if j == len(triangle[i])-1 {
                dp[j] += dp[j-1] + triangle[i][j]
            } else {
                dp[j] += triangle[i][j]
                if dp[j] > dp[j-1]+triangle[i][j] {
                    dp[j] = dp[j-1] + triangle[i][j]
                }
            }
        }
    }
    min := dp[0]
    for i := 0; i < c; i++ {
        if min > dp[i] {
            min = dp[i]
        }
    }
    return min
}

Last updated

Was this helpful?